An Entropy Estimator Based on Polynomial Regression with Poisson Error Structure

نویسندگان

  • Hideitsu Hino
  • Shotaro Akaho
  • Noboru Murata
چکیده

A method for estimating Shannon differential entropy is proposed based on the second order expansion of the probability mass around the inspection point with respect to the distance from the point. Polynomial regression with Poisson error structure is utilized to estimate the values of density function. The density estimates at every given data points are averaged to obtain entropy estimators. The proposed estimator is shown to perform well through numerical experiments for various probability distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jackknifed Liu-type Estimator in Poisson Regression Model

The Liu estimator has consistently been demonstrated to be an attractive shrinkage method for reducing the effects of multicollinearity. The Poisson regression model is a well-known model in applications when the response variable consists of count data. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator (MLE) of the Poisson regressio...

متن کامل

A New Estimator of Entropy

In this paper we propose an estimator of the entropy of a continuous random variable. The estimator is obtained by modifying the estimator proposed by Vasicek (1976). Consistency of estimator is proved, and comparisons are made with Vasicek’s estimator (1976), van Es’s estimator (1992), Ebrahimi et al.’s estimator (1994) and Correa’s estimator (1995). The results indicate that the proposed esti...

متن کامل

On the Estimation of Shannon Entropy

Shannon entropy is increasingly used in many applications. In this article, an estimator of the entropy of a continuous random variable is proposed. Consistency and scale invariance of variance and mean squared error of the proposed estimator is proved and then comparisons are made with Vasicek's (1976), van Es (1992), Ebrahimi et al. (1994) and Correa (1995) entropy estimators. A simulation st...

متن کامل

Monitoring and Change Point Estimation of AR(1) Autocorrelated Polynomial Profiles

In this paper, a remedial measure is first proposed to eliminate the effect of autocorrelation in phase-ІІ monitoring of autocorrelated polynomial profiles, where there is a first order autoregressive (AR(1)) relation between the error terms in each profile. Then, a control chart based on the generalized linear test (GLT) is proposed to monitor the coefficients of polynomial profiles and an R-c...

متن کامل

Liu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors

In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016